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ABSTRACT

A method has been devised for calculating the detection
probabilities for a scanning radar employing feedback in-
tegration. The optimal value of K, the feedback value, is
determined by equating 1/( I -XK), the equivalent number of
pulses integrated, to 63% of the number of pulses between
the 3-dB points of the scanning antenna. This expression
holds for small- and large-sample sizes and for fluctuating
and nonfluctuating targets. Then, by subtracting an antenna
beam-shape factor of 0.3 dB from the midbeam signal-to-
noise ratio, one can use the standard detection curves to
find the probability of detecting atarget as it passes through
the beam. The beam-shape factor differs from 0.3 dB by
less than 0.2 dB for small-sample sizes.
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DETECTION RESULTS FOR SCANNING RADARS
EMPLOYING FEEDBACK INTEGRATION

INTRODUCTION

In the conventional method of computing the performance of a scanning radar, the
analysis is based on the existence of an optimum integration angle, integration over this
angle yielding the greatest possible improvement in the signal-to-noise (S/N) ratio. This
optimum angle is found to be 0.84$ for a Gaussian-shaped beam, where j is the half-
power beamwidth. If integration is performed over this optimum angle, the actual radar
performance can be calculated by subtracting a beam-shape factor of 1.6 dB from the
noncoherent integration gain associated with the total number of pulses within the beam-
width ,3. The factor 1.6 dB is found in the following manner: Integration over 0.84$ of a
Gaussian-shaped beam yields the same S/N improvement as integration over 0.47$ of a
rectangular beam, resulting in a "scanning loss" of 10 log hTW47, which equals 1.6 dB.
This procedure is due to Blake (1-3) and yields results which correlate very well with
actual radar data.

Later Hall (4) considered the problem in a slightly different manner. He integrates
all the pulses within the 3 -dB beamwidth and weights them with the two-way antenna
power pattern. For the large-sample case, Hall calculates an antenna beam-shape factor
by a method similar to Blake's, except for the nonuniform weighting he introduces. The
small-sample behavior is found by direct calculation. That is, the individual probability
density functions of the sum of both noise and signal-plus-noise samples, properly
weighted, are found by convolving the probability density functions of the individual sam-
ples. From these densities for the sums, the probabilities of detection and false alarm
can be found. The exact procedure for calculating the probability of detection can be
found in his paper.

The previous methods assume that the N pulses are integrated by an ideal postde-
tection integrator (one with perfect memory). However, in many scanning systems, es-
pecially high-resolution systems, the storage requirements dictate the use of a feedback
integrator,* such as shown in Fig. 1. This report investigates several questions con-
cerning the feedback integrator, such as, what is the optimum value of the feedback factor
K and how does one calculate the probability of detection? To answer these questions a
method similar to the methods of Blake and Hall will be adopted.

LARGE-SAMPLE CASE

Since the results of this report depend on computer calculations, the more realistic
sin (x)/x antenna pattern will be used instead of the more manipulatable Gaussian-
shaped antenna pattern. That is, the one-way voltage antenna pattern is

sin (ao)

*Conventionally, this type of integrator is referred to as a delay-line integrator. However, since it
is much easier to stabilize the integrator by using digital components, the integrator will be called
a feedback integrator throughout this report.
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G. V. TRUNK

Fig. 1 - Feedback integrator, where K is the
feedback factor and D iS the interpulse period

where o is the angle measured from the beam center and a = 1.3916/o), 20, being the
3-dBI beamwidth of the antenna.

When a large number of pulses are integrated (this is equivalent to K being very
nearly equal to 1), the distributions of noise and signal-plus-noise will be approximately
Gaussian because of the Central Limit Theorem. As shown in the Appendix, for two

Gaussian densities G (V 2 o-2) and G (tp 20 2 ) the probability of detection is a monotonic
increasing function of a quantity that can be approximated by the S/N ratio (y2 - Acr .

For the feedback integrator, this expression equals

t ai {in [a(a + )iD)(
R(K be) p~alK) - {t ~~a(a* iD) | 2)
,M K) 2ff/ Vf ( ~1 _2U2/ (K 2 )

where a is the position of the latest received pulse as indicated in Fig. 2, cr2 is the

variance of the Gaussian noise, K is the feedback value, and 21D is the number of pulses

lying within the 3-dB beamwidth. Thus, if the scanning rate is w revolutions per second
and if the pulse repetition rate is F pps, D V wn7/oF. Consequently, the optimal value of

K can be found by maximizing K {K, a) with respect to K and a. The expression was maxi-

mized with the aid of a computer by first finding the value of a that maximizes the dif-

ference in means, p (a]K), for a given value of K. This calculation was simplified by
making use of the fact that

4

D<-IK) =s1 in~ [a(a -D)) + Kp (aI K)()
#(a Dog) { axle- D) I 

and assuming that the antenna gain equals zero outside the first null; i.e., G (6) = 0, if
oj Ž ?T/a. The results for D = 0.01 and K ranging from 0.99 to 0.997 in steps of 0.001

I RETURNED SIGNAL S {e)

II 

__ .

Fig. 2 - weighting function
of feedback integrator
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appear in the first three columns of Table 1. As one would expect, the values of pt
and fl (aot IK) increase monotonically with K. Referring to the last two columns of
Table 1, if (aptIK) is divided by 2a2 1/(l- 12), the largest S/N ratio is obtained for
K = 0.992 with a corresponding a 0.625 and N = 124. The symbol N wiU be referred
to as the number of pulses integrated and equals 1/(1 - K), which is approximately
2/(1 - K2). Note that the maximum is rather broad since the values of K in the interval
0.99 to 0.994 will yield S/N ratios less than 0.1 dB from the maximum.

Table 1

Optimization of the Feedback Integrator for D = 0.01

K C, t (0,I K) 1/(I - K) R (K, a)

0.990 0.565 65.4 100 4.62/a2

0.991 0.595 69.3 111 4.65/a2

0.992 0.625 73.6 124 4.67/a2

0.993 0.665 78.5 142 4.66/,r2

0.994 0.715 84.1 166 4.61/a-2

0.995 0.765 90.4 200 4.51/a2

0.996 0.825 97.8 250 4.37/a'

0.997 0.965 106.6 333 4.13/C2

To calculate an antenna beam-shape factor (AEF) for this system (the ABF plays the
same role as Blake's "scanning loss"), one can reason as follows: If the beam was rec-
tangular, the signal strength would build up as the number of pulses integrated, while the
noise would build up as the square root of this number. That is, the S/N voltage im-
provement for the constant signal would be /( - K)/2 a2 . The ratio of this number to
the largest S/N improvement obtained for the feedback system will be defined as the
antenna beam-shape factor:

ABF = 20 log4 R ( } - (4)

The previous procedure was repeated for smaller values of D, and the optimized results
are shown in Table 2. From this table, conclusions can be drawn which make it unneces-
sary to maximize Eq. (2) to find the optimal K. The procedure simply makes use of the
approximation

N ~ 1 2 D0+63) (5)
-1 1K D 1 5

Hence, the value of K is given by

K 1. 26 (6)
1. 26 + V

the ABF is always taken to be 1.6 dB.
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Table 2
Optimized Feedback Parameters for Small Values of D

a~pt K JK S

0.01 0.625 0.9920 124 1.52

0.006 0.627 0.9952 208 1.58

0.004 0.630 0.9968 312 1.58

0.003 0.632 0.9976 416 1.58

SMALL-SAMPLE CASE

For the small-sample case, Eq. (2) cannot be used because the distributions of noise
and signal-plus-noise are not Gaussian. Consequently, a Monte Carlo method will be
used to find the value of K that maximizes the probability of detection. To do this, it is
first necessary to find the noise thresholds. The noise value for the nth pulse out of the
integrator is

Sn = K Sn -, + Zn , 7)

or equivalently

Sn = di riZbti d
;=ea

whlere IZn} are independent and Rayleigh distributed.

is

If C7(u) denotes the characteristic function of y, the characteristic function of S,

Cs.(u) = JICxu) , where X = K'Znj ,
i=0

(8)

(9)

Since the infinite product cannot be calculated, the product was truncated to 40 terms;
and the Fast Fourier Transform was used to calculate Csj(u) and its inverse transform,
which is the density of s,,. The thresholds for various values of x and for a false alarm
probability of 10-6 are shown in Table 3.

Table 3
Thresholds for Various Values of K with Pf = 10-6

K 0.81 0.82 0.83 0.84 j 0.85 0 0.86 0.87 | 0.88

T 12.81 13.30 13.84 14.45 15.14 15.92 16.82 17.86

The Monte Carlo was run for D = 0.24, with S/N ratios of 3, 5, and 7 dB and for
values of K varying from 0.81 to 0.88. One-thousand cases were run for each S/N ratio.
For each case the initial signal pulse was uniformly distributed in the first 0 to D inter-
val, so that a pulse did not arrive at the beam center. The results for the Monte Carlo

4
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Table 4
Monte Carlo Results for the Small-Sample Case

S/N Number of Detections in a 1000 Trials for Various Values of K
Ratio 1

(dB) 0.81 [ 0.82 0.83 [ 0.84 0.85 0.86 0.87 0.88

3 60 60 65 63 65 65 66 65

5 373 374 378 381 381 377 367 363

7 851 852 j 855 861 862 859 856 844

are shown in Table 4. Again there exists a rather broad spread for the optimum value
of K; however, the peak value of 0.85 is very close to the value of.0.84 which is predicted
by Eq. (6). A value of K 0.84 corresponds to 6.25 integrated pulses. To find the ABF,
the characteristic function approach was used to calculate the detection curves for the
sum of six and seven Rician distributed pulses. The detection curves are the solid lines
in Fig. 3. The detection probability for K = 0.84 and S/N = 3 dB is found in Table 4 to
be 0.063. If a horizontal line is drawn at Pd = 0.063 on Fig. 3, it will intersect the
N - 6 and N - 7 curves. Then, by using linear interpolation between the curves, one
sees that a S/N ratio of 2.35 dB is needed to obtain a Pd of 0.063 when N = 6.25. The
difference between 2.35 dB and the 3 dB appearing in Table 4 is the ABF, i.e., AsF =
0.65 dB. In comparing all the results of Table 4 for K = 0.84 with the results of Fig. 3,
one sees that the ABE takes on values of 0.65, 0.53, and 0.60 dB, values all less than the
large sample value of 1.6 dB. The difference is due to the fact that the probabilities
appearing in Table 4 correspond to the cumulative probability of detecting a target as the
antenna beam sweeps the target, whereas the 1.6 dB represents a comparison when the
feedback integrator is in its optimum position (a = 0.63). To make a valid comparison,
the Monte Carlo procedure was repeated with the optimal position being uniformly dis-
tributed between 0.63 + D/2 and 0.63 - D/2. The results of the Monte Carlo appear in
Table 5. If one compares the K = 0.84 results with Fig. 3 and the N = 32 with those of
Robertson (5), one obtains the results in Table 6. Thus, the large sample value of 1.6 dB
for the ABF is approached very quickly.

o 99

0 9 9 

ci 06 S
Fig. 3 - Probability of detecting a nonfluctuating 0 |
target in Rayleigh noise, with N = 6 and 7 and P., = I
10-6. The dotted lines are used to calculate the i 08 I N'

ABF, the symbol x refers to cumulative detection 04 5 W

probabilities, and the symbol 0 refers to single- |
sample detection probabilities. I 

0 I.063

110 

2 3 4 5
S/N (dB)
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Table 5
Monte Carlo Results for Small Values of K with 0 = 0.63

K = 0.84, D =O.24, K = 0.968, D = 0.04,
and N = 6.25 and N = 32

Ratio No. of Ratio No. of
(dBR Detections (Rt) Detections

3 34 -2 3

5 191 0 . 7-3

7 700 2 546

9 990 4985

Table 6
ABF for Several S/N Ratios and Values of K

N = 6.25 N 32

S/N ARF S/N ARF
Ratio (Ra tio)
(d]B) d Ratio (t3)

5 1.47 0 1.80

7 1.32 2 1.55

9 1.57 4 A1.4

Average ABF = 1.45 Average ABF = 1.58

The previous procedure where the ABF Was calculated for the cumulative probability
of detection was repeated for N = 32. For this case the ABF took on the values 0.38,
0.30, and 0.30 dB.

Summarizing, the detection probabilities for a feedback integrator can be found by
the following procedure: First, K is chosen by Eq. (2). Then, the ABF is subtracted
from the midbeam S/N ratio; and any of the standard references (5-7) can be used to find
the detection probabilities. The ABF equals 0.3 dB, if one is concerned with the cumula-
tive probability of detection, or ABF equals 1.6 dBt if one is concerned with the maximum
probability of detection for a single look.

FLUCTUATING TARGETS

The question arises as to whether the previous procedure also applies when the
target is fluctuating ?* The answer is obviously yes when the sample size is large, be-
cause it is well known that the fluctuating results approach the nonfluctuating results as
the sample size grows large (8). To investigate the small-sample behavior a Monte

*In this report, only pulse-to-pulse fluctuations are considered.

6
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Carlo, using Swerling U target fluctuations, was run; and the results appear in Table 7
and Fig. 4. Comparing these two items, one obtains ABF values equal to 1.1, 1.38, 1.28,
and 1.37 dB for the maximum probability of detection on a single look and ABF values
equal to 0.55, 0.45, and 0.35 dIB for the cumulative probability of detection. While there
is more variation with fluctuating targets, the previous method can still be used with the
only difference being that the detection probabilities are found from detection curves for
fluctuating targets (9).

Table 7
Monte Carlo Results for K = 0.84 and

Swerling UI Fluctuating Targets

Cumulative Detections Detections for a = 0.63

(dB) Detections (dB) DetectionsS/.aioN.o {____ S/ Rai No__._of

1 24 2 23

3 86 4 121

5 318 6 332

7 662 8 680

9 911 10 894

0.29

C

C

4
I
a:
A.

0.0I
0 1 2 3 4 5 4 7

SIN 2BW
B 9

rig, 4 - Probability of detecting a
Swerling El fluctuating target in 'Ray-
leigh noise, with N - 6 and 7 and P., =
lO-6. The dotted lines are used to
calculate the AfF, the symbol x re-
fers to cumulative detection proba-
bilities, and the symbol 0 refers to
single-sample detection probabilities.
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CONCLUSIONS

A simple method has been developed to calculate detection probabilities for a feed-
back integrator. A formula is given for the optimal value of K regardless of whether the
sample size is large or small or whether the target is nonfluctuating or fluctuating. By
using an ABF of 0.3 or 1.6 dB, the cumulative or single-look probabilities of detection,
respectively, can he found from previously calculated detection curves. The values of
ABF change by about 0.2 dB for the small sample size. The value of ASF for N less than
six pulses has not been considered, since a feedback system would not be usually used
in these cases.
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Appendix

CALCULATION OF MONOTONIC QUANTITY

In the detection of a radar signal, one is concerned with the following binary hypoth-
esis

Z12= x2 + yi2

(Al)

: z,2 = [xi + G2(6)] 2 +

where the noise samples {xi} and {yjI are independent, identically distributed Gaussian
random variables with mean zero and variance o'2 and G2(0j ) is the two-way voltage
antenna pattern. Since we are concerned with small S/N ratios, the linear detector can
be approximated by a square-law detector.* Consequently, the test statistic Sn will be
of the form

Sn = KS_ 1 + Zn2 (A2)

or

Sn = A K'Zn- . (AS)
i~O

If K is very close to 1, Sn will be Gaussian distributed under both Ho and H1 . (Strictly
speaking, S, will not be Gaussian unless K a 1.) In terms of the two Gaussian densities
representing the null hypothesis and alternative, G (, L,)12) and GL 21 cr2

2 ), respectively,
the probability of false alarm is

Pfa = f G((p1, 1
2 ,x (A4)

T

and the probability of detection is

Pd f G(p2 , a22) dx, (A5)

where T is the threshold. Equations (A4) and (A5) can be rewritten as

(TARpI )/_1 (6

I - Pfa = f G(Ol) dx 4(T- A

*W. R. Bennett, "Response of a Linear Rectifier to Signal and Noise," Bell Sys. Tech. J. 23:97-113
(1944).
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and

fd 0 (0, 1) dx .A7)

( T-tk22)/%2

From Eq. (Ar), it can be implied that Pd is a monotonic increasing function of the quan-
tity Q = Q2 T)/a 2 . Solving Eq. (A) for T, it is seen that

Q I2 -Y cr (10 Pfa)]/cr2 (A8)

If - the constant -1'(l -Pfa) can be ignored; and then Q -p2 -mi)/>l the S/N
ratio.

In calculating the mean and variance of S,, the following well-known information
about the moments of a zero mean Gaussian variable will be used:

E(x 1 ) z E(Y1 ) = 0, E(x1 2) z E(yi2) - a
2 , E(x13) = E(y 3 ) = 

and

E(x,4) = E(y 1 4) z 3a 4

Then, the means of ZJ2 are

E(Za2jfNQ) E(x 1
2 +y,2) = 2_ 2 (A9)

E(Zz2 ]i) = G {x} +c2(oi)) + y1
2} = 04(01) + 2c2 (AlO)

and the second moments are

E =(_2 + -y2)2 = 8a4 (All)

£ (zi I~) g> {[ xE + G2 (01)] + y,2}
2

=( go,) + 8G4(0i) a2 + 85c4 (A12)

The variances of 7>2 are

Var(Z_2110 ) Ez|(Z/41H) - [E(Z,21HQ)]2 = 4_r4 (AI3)

Var(Z,2]1 1 ) = E(Z,41i) - [E(,2]1 1)12 = 4a2G4(0o) + 4cr 4 (A14)

Now, since the mean of the sum of random variables is equal to the sum of the
means of the random variables and since the variance of the sum of independent random
variables is equal to the sum of the variances of these random variables,

K= K'(2u7 2 ) = 2cr 2 /(l - K) (Al5)

10



NRL REPORT 7031 11

2 = E K'[G4(e ) + 2a2] = 2a2/(1 - K) + K K'G4(e ) (A16)
1=0 i=O

a-1
2 = K2 1(4a 4 ) 4a 4 /(1-K 2 ) (A17)

1=0

r2
2 = Z 2 i [4a2C4(0. ) + 4C4] = 4o-4/(1- K2) + 4cr2 -K 2 iG4 ( 1 ) (A18)

1=0 1=0

Substituting these values into Eq. (A8) yields

KG4(V, 2c2 VI (K - - pf i)-K1 RK2

Q =' (A19)
1/2

2ao K2' G4(0 ) + a2/(1K- K2)

However, for the small-signal case a 2 >> G4(01 ), Q reduces to

E Ki'G 4 (01 ) (A2)

2a/ 1 - K2

which is proportional to the S/N ratio.
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